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INTRODUCTION

The understanding of disease caused by human retroviral
infections has been hampered by our lack of understanding of
the complexity of the interactions of these viruses with the
human immune system. In fact, it is in part through the study
of these infections that important insights into the workings of
the immune system itself have been made. Human retroviruses
have the common characteristics of causing chronic persistent
infection and a long and variable asymptomatic period during
which overt clinical disease is not frequently manifested. Sub-
stantial evidence exists documenting that the human retrovi-
ruses, human immunodeficiency virus (HIV) and human T-cell
leukemia virus (HTLV), take advantage of activated T helper
(Th) cells to initiate permanent infection (117, 312, 364). Fur-
thermore, the transcriptional signals used by Th cells to regu-
late cell function are also used by these retroviruses to regulate
virus production. In effect, after establishing infection, human
retroviruses appear to benefit from an active immune system to
subsequently proliferate. This is, however, not without conse-
quences. The way in which these viruses respond to the intra-
cellular signals produced in Th cells following contact with
common antigens eventually leads to a distortion in Th-cell
function, and depending on which virus is involved, this may
lead to two extremely different disease outcomes. Infection
with HTLV results in dysregulated Th-cell proliferation, some-

times causing a disease of excess Th cells commonly known as
adult T-cell leukemia (ATL). In contrast, infection with HIV
causes a disease of profound Th-cell loss, resulting in systemic
immunosuppression and AIDS. Thus, in both instances, dis-
ease progression is intimately linked to a disturbance of normal
Th-cell growth and function, although the disease outcome
represents two different extremes in Th-cell numbers.
Activation occurs following the interaction of Th cells with

specialized cells (antigen-presenting cells [APC]), which
present foreign antigen. When appropriate costimulatory sig-
nals are delivered during this interaction, the Th cell becomes
activated and can proceed to differentiate and proliferate. In
addition to activation, two other normally occurring alternative
outcomes of APC–Th-cell interaction, anergy and apoptosis,
may occur. Anergy is a state of nonresponsiveness which may
occur to protect the host from inappropriate Th-cell responses
if the proper coregulatory signals are not available. Apoptosis
is a fundamental process which assists in the regulation and
normal physiologic development and balance of cell popula-
tions. In populations of immunologic cells, apoptosis is a nat-
ural process aimed at the regulated removal of unwanted or
self-reactive cells. Apoptosis is also observed to be increased in
a large number of disease states, often reflecting disturbances
in normal physiological processes. In addition to anergic cells,
highly elevated levels of apoptosis have, for instance, been
observed in HIV-infected individuals, occurring in Th cells and
other lymphocyte populations. In contrast, HTLV infection,
which is also intimately linked to cellular activation, is associ-
ated with a protection from apoptosis, possibly culminating in
the development of Th-cell cancer. In this review, the active
involvement of immune activation, anergy, and apoptosis and
specifically the consequences of dysregulated Th-cell functions
in the pathogenesis of human retroviral infections will be dis-
cussed with particular regard to their significance to aberrant
Th-cell function and disease progression.
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T HELPER CELL BIOLOGY

T Helper Cell Development and Maturation

Many activities of Th cells are to a large degree mediated by
the production of cytokines. A number of events determine
which type of cytokines these cells will produce, depending on
the type of Th cell they become (Th0, Th1, Th2, or Th3). The
events which determine this are largely influenced by the na-
ture of the infectious agent, the type of APC involved and the
local microenvironment. Depending on the costimulating sig-
nals that the Th cell receives, it may undergo appropriate
activation, proliferation, and cellular differentiation into an
antigen-specific Th1/0 or Th2 population. Current research in
this area is revealing other subpopulations such as Th3 cells.
However, for the purposes of simplifying this discussion, we
will confine ourselves to Th1 and Th2 cells. If the appropriate
costimulatory signals are not provided, the Th cell may enter a
nonresponsive state (anergy) or undergo programmed cell
death (apoptosis) (reviewed in reference 306). Activation, an-
ergy, and apoptosis are all normal physiologic processes which
regulate T-cell responses. Stimulation of Th cells with antigen
presented by the class II major histocompatibility complex
(MHC) APC, followed by appropriately polarized costimula-
tory signals and additional cytokines, commonly results in a
specific proliferation and further development into a dichot-
omy of the two extremes referred to as Th1 or Th2 (143). The
cytokines (type 1 and type 2) produced by Th1 and Th2 cells,
respectively, serve to regulate the function of specific immune
system effector responses of cytotoxic T lymphocytes (CTL)
and antibodies by B cells, respectively, in response to foreign
antigen. The Th phenotype produced is influenced by the cy-
tokines in the microenvironment of the Th cell, where it inter-
acts with particular APC, influenced by surrounding cell types
and their cytokines at the time of antigen presentation (236,
348).
Differentiation of naive Th cells into the Th1 phenotype is

promoted by gamma interferon (IFN-g). Th1 cells are charac-
terized by their ability to produce interleukin-2 (IL-2), IFN-g
and tumor necrosis factors alpha and beta (TNF-a and -b),
which are not made by Th2 cells. In contrast, Th2 (but not
Th1) cells synthesize IL-4, IL-5, IL-6, and IL-10 (reviewed in
references 274, 285, and 297). Th1 and Th2 cells also differ
markedly in the signals required for their development. IL-2 is
required for the development of the Th1 population, and these
cells drive the cell-mediated arm of the immune response,
including transient antibody production, the activation of mac-
rophages, and delayed-type hypersensitivity responses. The
Th2 phenotype is induced by IL-4, and restimulation of these
cells results in high-level IL-4 secretion (298, 322). The hu-
moral arm of the immune response is driven by Th2 cells,
resulting in sustained production of antibodies, including im-
munoglobulin E (IL-4) and activation of eosinophils (IL-5) and
mast cells (IL-3, IL-4, and IL-10) (274, 285, 297). In the ab-
sence of clear polarizing signals, a Th cell designated Th0 may
develop. These cells produce a cytokine profile intermediate
between those of Th1 and Th2 cells and can undergo partial
differentiation to the Th1 or Th2 phenotype (1, 93, 313). A Th3
phenotype which produces high levels of transforming growth
factor b (TGF-b) has also been described (44).
The development of a particular Th phenotype may be fa-

vored depending upon the exogenous stimulus received by the
host. In response to infections by intracellular organisms (vi-
ruses, bacteria, and protozoa), the Th1 population is favored
(69, 129, 284, 287, 363). The induction of a Th1 response by
intracellular bacteria and viruses reflects their ability to stim-

ulate IFN-a/b and IL-12 production by macrophages (285).
These cytokines induce IFN-g production by natural killer
(NK) cells and T cells, which in turn inhibits the development
of IL-4-producing cells (65). When IFN-g levels are absent or
limited, IL-4 production favors the development of Th2 cells,
which predominate in response to particulate antigens and
extracellular organisms including allergens and helminth infec-
tions (69, 261, 284, 288). The conditions favoring a particular
Th shift are thus dependent upon the cytokines elicited during
the initial immune response to an exogenous agent, and this
will affect any subsequent specific immune response.

Activation of T Helper Cells

Th cells are specialized in that they express cell surface
receptors which recognize and bind foreign antigen in the form
of short peptides displayed in the context of MHC class II by
APC (B cells, macrophages, and follicular dendritic cells). Ac-
tivation of the Th cell in the proper context results in the
expansion of Th populations and the elimination of inappro-
priately responding Th cells by apoptosis. The new population,
in the appropriate environment, provides the necessary cyto-
kines for the proliferation and expansion of other populations
of effector cells, such as B cells or CD81 CTL, enabling them
to utilize their effector mechanisms to remove foreign antigen.
Full activation requires T-cell receptor (TCR)-CD3 complex
recognition of peptide antigens presented by APC, as well as
nonantigenic costimulatory signals provided by the APC. Co-
stimulation is provided by the engagement of the B7 molecule
on APC with the constitutively expressed CD28 receptor on
the Th cell (110, 132, 159). Activation profoundly induces the
expression of cytolytic T-lymphocyte-associated sequence
(CTLA-4) (29), a receptor which shares 28% amino acid iden-
tity with CD28 (133) and which binds B7 with a 20-fold greater
avidity than CD28 does (207). B lymphocytes express three
distinct CTLA-4 counterreceptors designated B7-1, B7-2, and
B7-3 (25). While the interaction of B7 molecules at the
CTLA-4 receptor can enhance proliferative responses of rest-
ing Th cells costimulated with anti-CD3 and anti-CD28 anti-
bodies (208), anti-CTLA-4 antibodies inhibited proliferation
when cross-linked or presented in an immobilized form to-
gether with anti-CD3 and anti-CD28 antibodies (9, 25, 135,
182, 202, 207). This inhibition results from a block in the
transition from the G1 to the S phase of the cell cycle (185).
Furthermore, anti-CTLA-4 antibodies can induce cell death of
activated T cells (120). The contribution of CTLA-4 to Th cell
proliferation is thus more complex than was originally reported
and is an area requiring further study. A novel receptor
(SLAM) involved in T-cell activation has been reported to
enhance the proliferation of and cytokine production by CD41

T cells in the absence of any other stimuli (57). Signalling via
SLAM potentiates the development of a Th0/Th1 cytokine
profile in a CD28-independent manner (57).
The outcomes of APC–Th-cell interaction and the develop-

ment of the Th1 and Th2 phenotypes are presented in Fig. 1.
Appropriate costimulation results in a cascade of intracellular
signalling pathways required for the induction of IL-2 and
Th-cell proliferation. In one of these pathways, the activity of
phospholipase C-g1 is enhanced by phosphorylation, allowing
the cleavage of membrane-bound phosphatidylinositol 4,5-
bisphosphate to generate the second messengers inositol
triphosphate and diacylglycerol (55). The production of inosi-
tol triphosphate triggers a dramatic bimodal elevation of free
calcium levels within the cell (55, 102, 105). Diacylglycerol
directly activates protein kinase C (PKC) (61). Both second-
messenger signals are essential for the production of IL-2,
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which in turn is required for the proliferation of the activated
cell and for the maintenance of memory. The availability of
IL-2 allows the Th cell to remain in the cell cycle and also
protects it against apoptosis. Repeated activation of T cells
may result in a loss of IL-2 synthesis and the subsequent elim-
ination of these cells by apoptosis.
While Th1 cells proliferate in response to IL-2, Th2 cells

proliferate in response to IL-2 or IL-4, provided that IL-1 is
made available by the APC (348). In contrast, Th1 cells express
little or no IL-1 receptor (39). Mitogen stimulation results in
much higher levels of cyclic AMP (cAMP) in Th2 cells than in
Th1 cells (238). Inducers of cAMP inhibit Th1 cell prolifera-
tion but do not inhibit Th2-cell proliferation (131). Further-
more, agents which elevate cAMP levels block IL-2 and IFN-g
production by Th1 cells but not IL-4 production by Th2 cells
(20). The level of cAMP generated in the Th cell may differ-
entially regulate the lymphokines produced by Th cells, and the
higher levels of cAMP induced in the activated Th2 cell may
interfere with several transcription factors including NF-kB
and AP-1. This could explain the contrasting cytokine profiles
of Th1 and Th2 cells (8, 43, 247, 332). Lower NF-kB levels are
noted in Th2 cells (198), and the cytokines produced by both
Th1 and Th2 cells significantly modulate levels of the NF-kB
inhibitor protein, IkBa (197). Furthermore, the relative abun-
dance of the IL-4-inducible transcription factor STAT6 corre-
lates with differentiation to the Th2 phenotype (199). The
influence of cAMP levels on STAT production in Th2 cells has
not been reported. Another Th2 lymphokine, IL-10, inhibits
antigen-stimulated proliferation of Th1 cells (91, 92), probably
by modulating the synthesis of B7 molecules (73). It seems

likely that Th2 cells do not require costimulation via CD28/
CTLA-4 for activation. Thus, the immune response generated
to an external stimulus not only is limited by the lymphokines
produced by the Th cell and their downstream effects on Th-
cell activation genes but also may be influenced by the avail-
ability of accessory signals required during activation. Th-cell
activation may result in the coupling of the Fas receptor
(CD95) with its ligand. CD95 is a member of the TNF/nerve
growth factor receptor superfamily, and ligation of CD95 with
Fas ligand (FasL) causes rapid apoptosis (programmed cell
death) in sensitive cells (315). Apoptosis is characterized by the
activation of a Ca21-dependent endonuclease which cleaves
chromosomal DNA between nucleosomes (301, 354). The
preferential expression of FasL on Th1 cells (279) arms these
cells to kill other cell types or other Th1 cells by apoptosis.

CONSEQUENCES OF RETROVIRAL INFECTION ON
IMMUNE ACTIVATION

Human retroviruses cause persistent infections character-
ized by long, clinically asymptomatic periods prior to disease
progression. HTLV is known primarily as the etiologic agent of
ATL, a malignancy of mature Th lymphocytes (140, 141, 268,
361). A hallmark of HTLV infection is the induction and
continuous high-level expression of IL-2 receptor (IL-2R) (Ta-
ble 1) (71, 114, 149, 272, 317, 357). Infection with HIV, the
etiologic agent of AIDS (14), is marked by a loss of CD41 Th
cells, resulting in immune system dysfunction (Table 1). Both
infections induce a general state of immune system activation
and are associated with neurological disorders. As with other

FIG. 1. Activation, proliferation, and differentiation to Th1 and Th2 phenotypes. The events following costimulation of a Th cell by interaction with an APC include
activation, anergy, and apoptosis. Following appropriate costimulation, the Th cell proliferates and differentiates into Th subpopulations dependent upon the nature
of the stimulatory signal and cytokines in the microenvironment.
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viruses, these retroviruses have the potential to subvert the
cellular transcriptional machinery with specific regard to uti-
lizing Th-cell signals for their own replication. This subversion
of the host cell machinery most often results in a dysregulation
of normal Th-cell function and growth. While both viral infec-
tions result in a generalized increase in Th-cell activation,
there is a profound divergence both in the subsequent Th-cell
activation-related events and in the ensuing consequences of
cell expansion versus cell loss. The alterations in Th-cell pop-
ulations as a result of HIV-1 and HTLV-1 infection and the
resulting dysregulation of normal cellular activation and pro-
liferation are presented schematically in Fig. 2.

HIV Infection

HIV infection can be generally grouped into three clinical
phases: (i) the acute infection period, which in some ways
presents similarly to a mononucleosis-like syndrome; (ii) an
asymptomatic period of variable duration; and (iii) the period
of clinical disease during which multiple opportunistic infec-
tions and/or neoplasms are manifested. Recent studies have
shown that HIV infection in vivo is a dynamic process involving
continuous rounds of infection, replication, and cell death
(144, 349). HIV predominantly infects CD41 T cells (Th cells)
as well as CD41 cells of the monocytic lineage, which also
express MHC class II. The turnover of CD41 T cells during
HIV infection is thought to be rapid, with the entire population
of peripheral CD41 T cells estimated to be replaced on aver-
age every 15 days (144). While the greater majority of infected
individuals do not present clinical signs of disease for extended
periods, virus replication remains high, especially in reservoirs
such as the lymph nodes and spleen (74). In patients who die
of AIDS-related illnesses, infection is extensive, targeting
brain, lung, colon, and liver cells (74). Persistent and high
levels of virus replication result in the loss and destruction of
normal lymphoid architecture. As the immune system chroni-
cally deteriorates, virus and virus-infected cells are less effi-
ciently removed by the host.
The spread of HIV infection to brain cells may result in an

AIDS dementia complex, represented by a variety of mild to
severe neurological disorders, including neoplasms, peripheral
neuropathies, and myopathies (reviewed in reference 310).
Neurotoxins produced by infected cells and induced by viral
proteins may contribute to cellular damage, resulting in neu-

rologic disorders. Neurotoxic activity has also been demon-
strated for the viral regulatory proteins Tat and Nef in a variety
of cell lines and animal models (reviewed in reference 204).
Virus replication can be measured in brain tissue (180) and the
central nervous system (340) in patients with AIDS dementia
disorders. However, there is no evidence to suggest that the
development of AIDS dementia is associated with increased
viral load. In fact, one study of children with severe AIDS-
related encephalopathy indicated low viral replication in brain
tissue (340). However, vigorous CTL activity directed toward
HIV-1 Env, Gag, Pol, and Nef proteins has been reported to
occur in the cerebrospinal fluid of patients with AIDS demen-
tia (157).
Persistence of virus in the host in the presence of ineffective

immune system clearance results in a state of chronic immune
system activation. Activation of cells in the course of the im-
mune response further favors the spread and establishment of
HIV in new target CD41 Th cells and in macrophages. In
addition, virus replication is potentiated both by activation
signals and by cytokines such as IL-6 and TNF-a (270, 288).
Cell-mediated and humoral immune responses are detectable
early in infection. These include virus-specific neutralizing an-
tibodies, antibody-dependent cellular cytotoxicity, CTL and
NK cells, and complement-dependent lysis (reviewed in refer-
ence 257). In addition, within the CD81 population is a subset
of cells which induce an activation-dependent, nonlytic sup-
pression of virus replication (347). Studies of long-term non-
progressors infected with HIV-1 suggest that low viral load is
associated with apparently effective neutralizing antibody and
CD81 lymphocyte responses (31, 258).
The asymptomatic period associated with HIV-1 infection is

characterized by a high-level state of immune system activa-
tion, as is evident by the expression of related activation mark-
ers (Table 2). These include b2-microglobulin, serum and uri-
nary neopterin, soluble IL-2R, soluble CD8 molecules, and
soluble TNF-a receptors. The increase in the levels of many of
these markers during disease progression is paralleled by the
development of immune system dysfunction, which may result
in an anergy-like loss of proliferative potential (191, 263, 299,
300) or in cell death by spontaneous or activation-induced
apoptosis (4, 12, 115, 122, 227). A deficiency in extracellular
cysteines and intracellular glutathione occurs early in HIV
infection and has been associated with a decline in CD41 Th
cells and with progression to disease (77, 79). While cysteine

TABLE 1. Human Th-cell tropic retroviruses and Th-cell diseases

Characteristic
Mechanism in:

Th-cell cancer AIDS

Underlying lesion Accumulation of Th cells Loss of Th cells

Virus HTLV-1 HIV-1

Characteristics in host Persistent intracellular viremia; low viral load Persistent intracellular and extracellular viremia; high
virus load

Frequency of disease Infrequent; approximately ,1% infected develop ATL Frequent; approximately .98% infected develop AIDS

Activation Increase in IL-2R and IL-2 spontaneous proliferation;
non-MHC-restricted responsiveness

Antigen-antibody complexes in germinal centers;
infection of APC; aberrant cytokine production by
APC and altered cytokine production by Th cells

Apoptosis Resistance due to Tax Increase in frequency and in susceptibility to Tat

CD3/TCR triggering Decrease in HTLV-1 expression Increase in HIV expression
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FIG. 2. Aberrant responses to activation induced by retroviral infection. (A) HIV-1 infection induces aberrant activation, increased anergy, apoptosis, and impaired
proliferation and loss of Th cells by immune system destruction. (B) Infection with HTLV-1 induces IL-2-independent proliferation of Th cells, which may be protected
from apoptosis. Subsequent events lead to transformation, the clonal expansion of Th cells, and the development of T-cell lymphoma.
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metabolic dysfunction is evident in species highly susceptible to
AIDS such as humans with HIV infection and rhesus ma-
caques with simian immunodeficiency virus (SIV) infection, no
decreases in cysteine or glutathione levels are evident in HIV-
infected chimpanzees or SIV-infected African green monkeys
(77).

HTLV Infection

The asymptomatic period of HTLV-1 is associated with low
virus expression in peripheral blood T cells and low levels of
virus in leukemic cells of ATL patients (95, 107, 149, 174, 316).
In vitro culture of ATL cells results in virus production,
whereas in vivo culture does not (95). This would suggest that
such cells producing high levels of virus in vivo become targets
of the immune system and are either removed by CTL, anti-
body-dependent cellular cytotoxicity, or NK cells or are down-
regulated in vivo by other cells so that virus is not expressed. In
contrast, expression of the virus-encoded trans-activating pro-
tein, Tax, has been demonstrated in peripheral blood mono-
nuclear cells (PBMC) of seropositive carriers of HTLV-1 prior
to the onset of ATL (325). The inflammatory disease induced
in HAM/TSP (106, 252) is associated with higher levels of virus
expression, and virus is easily detected in PBMC and spinal
fluid (21, 237). The level of HTLV-1 detected in central ner-
vous system tissues from HAM/TSP patients is greater than in
brain tissue from ATL patients, indicating that there is an
increased viral load in HTLV-1-associated neurological dis-
ease (82). The contribution of viral burden to ATL and/or
HAM/TSP is a neglected area requiring in-depth study.
The frequency of HTLV-1-specific CTL in HAM/TSP pa-

tients is markedly higher than in asymptomatic patients (82).

These CTL recognize target cells expressing the Tax protein
(82, 155, 167, 181, 259, 260), and in some patients CTL specific
for Gag and Env can be detected (82). Naturally occurring
variants of Tax impair its recognition by CTL, and these vari-
ants have severely reduced transactivation potential (249).
While variation in the principal target epitope may contribute
to the persistence of the virus, this could, under some condi-
tions, limit virus expression. Higher frequencies of CTL in
HAM/TSP patients may correlate with the high viral load,
which is not observed in ATL patients (176). While the fre-
quency of Tax-specific CTL is lower in asymptomatic patients
(259), the demonstration of such CTL raises speculation about
their role in the pathogenesis of HAM/TSP.
HTLV-1 infection is associated with the constitutive expres-

sion of IL-2R (71, 114, 136, 230, 233, 360, 362) and in some
cases with the production of IL-2 by infected cells (71, 272,
357). In addition, HTLV-1 carriers demonstrate large numbers
of activated T cells and a high degree of spontaneous prolif-
eration of in vitro-cultured T cells (71, 272, 357). The level of
immune system activation observed in asymptomatic HTLV-1
patients is not likely to be induced by Tax, because it has been
shown previously that Tax cannot activate lymphocytes on its
own. Activation can be induced by cell-to-cell contact with
HTLV-1-infected cells (172). The maintenance of this state of
activation is probably dependent on the ability of Tax and
subsequently influenced cellular proteins to up-regulate cellu-
lar gene expression. HTLV-1-mediated Th-cell activation,
combined with virus-mediated induction of cellular gene ex-
pression, may permit the virus to both initiate and maintain the
lymphoproliferative process. However, this does not explain
the quiescence of the virus in the infected, activated Th cell.
Alternatively, the down-regulation of CD3 on leukemic cells

TABLE 2. Markers of activation in HIV and HTLV infection

Marker

Marker expression ina:

Reference(s)HIV infection HTLV infection

ASYb AIDS ASY HAM/TSP ATL

b2-Microglobulin 1 64, 85, 187, 195, 253, 370
Neopterin 1 1 1 64, 97, 121, 195, 250, 290
Soluble CD8 1 1 1 253, 292, 331
IL-2 1 2 1 1 2 296, 325
Soluble IL-2R 1 1 1 1 126, 148, 251, 296, 303, 309
TGF-b 1 245, 326
TNF-a 1 2 1 188, 195, 251, 296, 335
TNF-b 1 96, 326
TNF-aR (RI, RII) 1 113, 163, 164
IFN-a 1 221
IFN-g 1 1 1 1 1 245, 326
HLA-DR 1 1 1 108, 171
HLA class II 1 1 200
CD38 1 168
CD28 2 49
CD45RO 1 265
Soluble CD2 2 1 291
Immunoglobulins 1 IgA 1 IgG2 1 IgA 80, 242, 277, 290, 341

1 IgM 1 IgG4 1 IgM 45, 211, 337, 341
1 IgG1 1 IgG 277, 341
1 IgG3 213
2 IgG2 277
2 IgG4 211

Lipoproteins 1 307
Cholesterol 1 307
Fas (CD95) 1 1 1 66, 67, 84, 168, 308

a1, increased; 2, decreased.
b ASY, asymptomatic phase.
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(152, 330, 363) may suggest that Th-cell activation occurs more
continuously in infected cells, perhaps during the asymptom-
atic period, or may be a reflection of adaptation of the devel-
oping tumor cells to immunologic pressures. Infected cells
respond indiscriminately to antigen and with no HLA-DR re-
striction (271). Furthermore, ATL cells have recently been
reported to evade NK cell-mediated cytolysis in mice with
severe combined immunodeficiency (scid mice), and this eva-
sion appears to be dependent upon low virus expression (89).
Th-cell activation and cell proliferation may be a mechanism
for the virus infection to be propagated while maintaining a
protective intracellular location, thus avoiding detection by
immune responses outside of host cells.

EFFECT OF T HELPER CELL ACTIVATION ON
RETROVIRAL EXPRESSION

Figure 3 depicts the structure of the long terminal repeat
(LTR) regions which mediate replication of HTLV-1 and
HIV-1. The striking feature of the LTR regions is how few
similar functional promoter elements are shared between
HIV-1 and HTLV-1. The HTLV-1 TRE-1 sequences are re-
sponsive to activation mediated by the virus-encoded trans-
activating protein Tax. The response of one TRE-1 to Tax-
mediated trans-activation is further enhanced by a sequence of
four pentanucleotide repeats (TRE-2) located between the
second and third TRE-1 sequences (223). A 25-bp sequence
(TRE-2S) within TRE-2 is required for cooperative Tax trans-
activation (324). Mutagenesis studies indicate that the Ets- and
NF-kB-binding sites in TRE-2S are dispensable to the coop-
erative effect (324). Tax does not bind to these enhancer sites
but can interact with a number of families of transcription
factors to induce gene expression (16, 35, 98, 111, 142, 143,
193, 262, 320, 321, 345, 368). In fact, Tax expression induces
phosphorylation and turnover of the inhibitory protein IkBa,
resulting in constitutive NF-kB activity (186). In addition, Tax
activates many cellular genes including IL-2 and its receptor
alpha chain (reviewed in references 119, 359, and 360). This
deregulation of the expression of cellular genes has been sug-
gested to contribute to alterations in the phenotype of infected
cells and the subsequent development of HTLV-1 leukemo-

genesis via transformation (317, 360). However, the pleiotropic
action of Tax is not explained by viral quiescence observed in
vivo, unless early T-cell activation genes can support short
periods of viral replication and, hence, Tax expression period-
ically.
The pathways by which Tax exerts its trans-activating func-

tion appear to be independent of both PKC (278) and cAMP
(273) pathways. Up-regulation of transcription by the PKC-
stimulating phorbol ester 12-O-tetradecanoylphorbol-13-ace-
tate (TPA) is determined by a 60-bp element (TPA RE) which
overlaps with one TRE-1 (278). In addition, the integrity of the
two 51-bp repeated elements which overlap the first two
TRE-1 regions is required for optimal response to phorbol
ester (278). Induction by activators of adenylate cyclase (243,
273) is mediated via the octameric cAMP-responsive element
located within the TRE-1 sequences and is dependent upon
the availability of PKA (162). Thus, HTLV-1 expression may
be up-regulated by Tax and by cellular pathways which may be
induced in the activated Th cell upon infection.
In comparison with the HTLV LTR, the core elements re-

quired for HIV LTR gene expression include the Sp1-binding
sites, the TATA box, and the Tat responsive element (TAR
element) (Fig. 1) (17, 18, 101, 134, 160, 161). HIV expression
is positively regulated by binding of the HIV-encoded Tat
trans-activating protein to the TAR element found at the 59
end of all mRNAs (19). The HIV-1 promoter also has several
cis-acting regulatory elements in common with cellular gene
promoters including NFAT-1, NF-kB, AP-1, and Sp-1. Two
NF-kB-binding sites act as a major enhancer of LTR-mediated
gene expression and are important for basal LTR activity (18,
150, 241). Deletion of the Sp-1 binding sites results in a marked
decrease in Tat-mediated activation (18, 134). Deletion of both
NF-kB- and Sp-1-binding sites abolishes Tat-mediated tran-
scription, indicating that Tat may interact with cellular tran-
scription factors to stabilize elongation and to initiate tran-
scription (17, 165, 166, 210). Binding of the nuclear factor of
activated T cells (NFAT) is dependent upon Th-cell activation
(304). The NFAT-1-binding site falls within a region of the
LTR called the negative regulatory element, and deletion of
this region results in higher levels of virus expression (212).
However, the HIV-1 LTR responds to agents which induce

FIG. 3. Schematic representation of the LTR of HTLV-1 and HIV-1. The binding locations of cellular transcription factors are indicated and are further discussed
in the text. USF, upstream stimulatory factor; URS, upstream responsive sequence; TCF, T-cell-specific transcription factor. Arrows indicate the start site of
transcription.
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Th-cell activation, including TPA, phytohemagglutinin, and
monoclonal antibodies to the cell surface receptors CD3 and
CD28 (7, 123, 130, 169, 222, 241, 293, 327). The LTR is also
responsive to several cytokines (IL-1, IL-6, and TNF-a) which
are up-regulated in the cell during Th cell activation and which
may also be provided by accessory cells (11, 78, 153, 175, 184,
225, 253, 344).
We have previously observed, using Jurkat T-cell clones

containing integrated LTR–b-galactosidase constructs, marked
differences between activation-mediated induction of HIV-1 and
HTLV-1 (61). While the HIV-1 LTR was up-regulated by
single signals such as CD3 or CD28 pathways, the HTLV-1
LTR was not induced by these pathways. HIV-1 LTR-medi-
ated transcription was increased by TPA, and this response was
further enhanced by the calcium (Ca21) ionophore ionomycin.
In contrast, the induction of the HTLV-1 LTR by TPA was
inhibited by ionomycin (58, 59, 61), suggesting that the trig-
gering of Ca21-dependent pathways in the cell could adversely
affect virus expression. Further experiments revealed that the
ionomycin-mediated inhibition was not restricted to TPA-in-
duced activation mechanisms, since basal LTR activity and
Tax-mediated activation were also compromised by ionomycin.
The immunosuppressive drug cyclosporin A suppresses the
proliferation of HTLV-1-infected T-cell lines (244). In our
experiments, the suppression of Ca21-dependent phosphatase
activity by cyclosporin A caused LTR responses in ionomycin-
treated cells to recover to levels above those obtained in the
absence of ionomycin (59), suggesting a complementation of
ionomycin and cyclosporin A in HTLV-1 activation. Increased
levels of free Ca21 in the presence of cyclosporin A may
provide a greater affinity of transcription factors for the LTR
and an enhanced LTR induction.
These findings suggest that Th-cell activation, while up-reg-

ulatory to HIV-1 LTR function, can be inhibitory to HTLV-1
expression and may contrast two different survival strategies
within the human host. In this respect, the presence of proviral
DNA and of low levels of viral products, such as Tax, may be
sufficient for the expression of IL-2R by the infected T cell. An
elevated state of activation resulting in the expression of IL-2R
and activation of the IL-2/IL-2R autocrine loop could concur-
rently provide conditions allowing for the expansion of
HTLV-1 provirus-infected cells while suppressing virus expres-
sion and cell destruction by the host immune response. This
may provide one of several likely events which contribute to
the quiescence of the virus during the asymptomatic period of
ATL.

T HELPER CELL ACTIVATION AND
DISEASE PROGRESSION

HIV and AIDS

Immune dysfunction is a characteristic common to human
retrovirus infection, reflecting the central role of Th cells in
orchestrating a broad array of immune responses. There are
several theories regarding the mechanisms responsible for pro-
gression to AIDS, and these are summarized in Table 3. One
of many mechanisms suggested to account for the loss of
CD41 lymphocytes during progression to AIDS centers on the
dysfunctional activation of Th cells. In contrast to HTLV in-
fection, HIV infection is characterized by high virus loads and
waves of extracellular viremia due to recurring periods of neu-
tralization and escape. Consequently, there is substantial dep-
osition and trapping of antigen-antibody complexes in the fol-
licular centers of lymph nodes. This saturation of MHC class
II-rich regions with virus is likely to substantially impair APC–

Th-cell interactions (138). Further contributing to Th-cell dys-
function is the loss of APC function of monocytes and den-
dritic cells in AIDS patients (215, 229). This is supported by
the reduced production of IL-12 by macrophages in HIV in-
fection (40) and the ability of IL-12 to restore T-cell responses
to recall antigen in HIV-infected individuals (51).
Prior to a significant decline in CD41 cell numbers, immune

dysfunction (124, 190, 191, 194, 258, 264, 305, 311), demon-
strated by a sequential suppression of activation in response to
signalling by antigen, mitogen, and pokeweed mitogen (190,
191, 263, 299, 300) and an increased number of T cells pro-
grammed for cell death (227), is evident. These abnormalities
in T-cell response are progressive, demonstrated by the loss of
proliferative responses to recall antigens and lectins in later
stages of infection (226, 305). Th-cell dysfunction may be me-
diated by the interaction between the CD4 receptor and solu-
ble gp120. In fact, gp120 inhibits the proliferation of PBMC
stimulated via the TCR (46, 206) and the expression of IL-2
mRNA in CD41 T cells (254). Proliferation was restored by
the addition of exogenous IL-2 (206). A recent report by
Schols and Declercq demonstrated that gp120 inhibited CD41

and CD81 T-cell functions by inducing IL-10 production by
monocyte/macrophage cells (294). Elevated levels of IL-10,
TNF-a, and IFN-g have been demonstrated in vivo in individ-
uals infected with HIV-1 (87). The impaired response of nor-
mal PBMC (294) and Th1 cells (86) cultured with gp120 was
relieved by stimulation through the CD28 receptor. The partial
restoration of proliferative responses by CD28 stimulation of
Th1 cells also restored IFN-g and IL-2 production (86). The
expression of CD28 is low in HIV-infected individuals (27),
and the loss of this recovery route may permit the maintenance
of Th-cell dysfunction. Recovery may be further compounded
by the fact that IL-10 appears to induce an inhibition of anti-
gen-stimulated proliferation of Th1 cells (91, 92) by down-
regulating the synthesis of B7 molecules (73).
The induction of Th-cell unresponsiveness is not exclusive to

gp120. The HIV Tat protein inhibits T-cell responses to phy-
tohemagglutinin and pokeweed mitogen (343) and to anti-CD3
stimulation (314). Tat directly binds to CD26 to evoke this

TABLE 3. Theories regarding mechanisms mediating disease
progression to ATL versus AIDS

ATL AIDS

Multiple mechanisms singly or
combined

Multiple mechanisms singly or
combined

IL-2-independent activation
resistant to TGF-b regula-
tion of apoptotic removal

Persistent waves of extracellular
viremia and high virus load

Persistent activation of Th cells Impaired APC–Th-cell interac-
tion

Reduced expression of b-poly-
merase and impaired DNA
repair

gp120-impaired Th-cell function

Anergy
Increased reactive oxygen in-
termediates and increased
DNA damage

Loss of CD4 renewal capacity

Loss of proliferative responses
Survival of unfit Th cells, accu-
mulation of rare mutational
events, and eventual ATL

Increased anergy and apoptosis

Shift in Th-cell population to
Th2-predominant response

Increased oxidative stress and
apoptosis
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inhibition (127, 314), which can be overcome, similarly to
gp120-induced unresponsiveness, by exogenous IL-2 or by co-
stimulation via CD28 (314). If Tat and gp120-CD4 interactions
are able to induce a state of anergy in T cells, this might result
in an eventual loss of T-cell subsets. Additionally, if a shift
from Th1 to Th2 occurs, IL-2 levels may not be sufficient to
effect recovery.
Progression to disease is marked by an increase in virus

expression concurrent with a decrease in the number of CD41

T cells (125). This may be due to transcriptional activation of
the virus by cytokines such as TNF-a and IL-6, whose levels are
also elevated at this time (26, 269, 328). However, lower pro-
liferation rates by Th1 cells would be expected to contribute to
a lower replicative efficiency, which could not support the ob-
served increase in virus expression associated with progression
to AIDS (287). A lower efficiency of Th1 cells to support virus
replication could be due to the presence of IFN-g or to the
release of suppressive factors by CD81 T cells. Replication-
suppressive factors produced by CD81 T cells include the
b-chemokines MIP-1a, MIP-1b, and RANTES (56). The entry
of HIV-1 into a CD41 cell is dependent upon the coexpression
of specific fusion factors. Infection by primary and macro-
phage-tropic isolates requires the G-protein-coupled seven-
transmembrane-domain coreceptors, CC CKR3 and CC CKR5
(3, 48, 70, 75, 76), while infection with T-cell-line-adapted
isolates and syncytium-inducing primary isolates requires fusin
(88), another G-protein-coupled seven-transmembrane-do-
main coreceptor whose ligand has not yet been identified.
Binding of the replication-suppressive chemokines to the co-
receptor has been shown to inhibit cell fusion mediated by the
HIV envelope glycoproteins (3, 70). However, CD81 suppres-
sive factors also potently suppress HIV LTR-mediated gene
expression (42, 62, 63, 216), and this occurs before the onset of
RNA transcription (178). In addition, the ability of CD81 T
cells to suppress LTR-mediated gene expression does not ap-
pear to correlate with improved clinical status (63a). Two dis-
tinct CD81 T-cell suppressor activities have been reported,
one which is lost upon disease progression and a second which
is maintained at all stages of disease (13). Thus, while virus
replication is enhanced during progression to disease, there
are mechanisms supporting a down-regulation of virus expres-
sion by the preferentially infected Th cell, including suppres-
sive cytokines, chemokines, and a disruption in the normal
Th-cell responses to activation. Enhanced virus replication
may reflect a change in the phenotype of cells which are in-
fectable and presumably the infection of new cell types brought
on by a change in the phenotype of the virus.
It has been suggested that during infection with HIV, the

Th-cell population becomes skewed with a loss of Th1/0 cells
and a predominance of Th2 cells. This proposed shift from a
Th1 to a Th2 profile is associated with decreased cell-mediated
immunity (53, 218). The Th1 to Th2 shift hypothesis and its
importance in HIV infection remains controversial (118, 218).
Taken together with this theory are data which demonstrate
preferential replication of HIV-1 in Th2-like cells (218). Ele-
vated levels of soluble CD30 have been detected in HIV-1-
infected subjects (266). CD30, a member of the TNF/nerve
growth factor receptor superfamily, is strongly expressed on
activated Th2 clones but not Th1 clones and has been shown to
up-regulate HIV-1 expression (68, 286). Strong cell-mediated
immunity is detected in HIV1 long-term nonprogressors (31,
258), while a type 2 cytokine profile is found in progressors (54,
342). Taken together, the above evidence suggests that HIV
can subvert both the cell-mediated and humoral arms of the
immune response by causing increased Th-cell dysfunction and
decreased Th cell numbers and antigen-specific Th-dependent

responses, resulting in skewed cytokine profiles, conditions
favoring virus replication, and ultimately Th-cell loss.
Vigorous CTL activity has been reported in HIV-1-infected

individuals (reviewed in reference 204), and it has been spec-
ulated that this activity may be important in the control of
viremia during primary infection (23, 183). The numbers of
these HIV-1-specific CTL are reduced in HIV-1-infected sub-
jects with low CD41 T-cell counts (34), and this decrease
correlates with disease progression (189). Thus, it appears that
a stable pool of CTL is required for the control of HIV-1
infection. A reduced pool of CTL in late-stage disease may be
the result of HIV-mediated apoptosis, since CTL specific for
Epstein-Barr virus are maintained (34). A reduction in HIV-
1-specific CTL activity may contribute to increased viral ex-
pression and a reduced clearance of infected cells. In contrast,
CTL activity may contribute to the immunopathogenesis of
HIV-1 infection through persistent function to inappropriate
targets such as Th-APC (54, 138, 204). Insights into the role of
CTL in HIV infection have been gleaned through the study of
long-term nonprogressors and exposed seronegative individu-
als (reviewed in reference 54). Indeed, lack of progression is
associated with low viral load and with anti-HIV CD81 CTL
directed against Gag, Pol, and Env (282). In exposed seroneg-
ative individuals, HIV-specific T-cell responses including CTL
activity can be detected (54), indicating that limited exposure
to the virus may be sufficient to engage a cell-mediated im-
mune response in the absence of HIV-specific antibodies.

HTLV and ATL

On the basis of studies of HTLV-1 transmission, it appears
that ATL develops preferentially in individuals infected early
by their mothers through breast milk (240). This suggests a link
between disease progression and an incubation period span-
ning many years. It has been suggested that infection with
HTLV-1 subtly alters the normal immune system develop-
ment, such as during ontogeny, and that such events may favor
the later development of lymphoma (219). Few infected pe-
ripheral blood T cells express HTLV-1 (173), however, in-
fected cells can activate uninfected cells via cell-to-cell contact
(353). In this way, a small number of infected cells may main-
tain a persistent level of immune system activation, possibly
precipitating the development of ATL or HAM/TSP. This con-
dition of immune system activation is further supported by the
ability of the infected Th cell to maintain the activated state for
prolonged periods in an IL-2-independent manner (146, 353).
We have postulated that Th-cell activation down-regulates
HTLV expression (59, 61). Hollsberg et al. (145) have reported
that HTLV-1 mediates T-cell activation through a pathway
which is insensitive to the immunosuppressive cytokine TGF-
b1. In addition, HTLV-1 infection induces a resistance in pre-
viously activated cells to immune suppression by TGF-b1
(145).
While HTLV-1 preferentially infects CD41 Th cells, many

cell types may be infected in vitro, including cells of the mono-
cyte-macrophage lineage (72). In addition, Osame et al. (252)
reported on the production of a colony-stimulating factor with
myelinotoxic activity that is produced in patients with HAM/
TSP. Infection of macrophages with HTLV-1 in vivo has not
been clearly demonstrated. However, given the low level of
virus expression by infected cells in peripheral blood, detection
of virus in monocytes has been problematic. It has been sug-
gested that infected macrophages could secrete neurotoxic
agents mediating demyelination and inflammation. While this
remains to be proven scientifically, it is possible that aberrant
activation of Th cells by HTLV-1 will provide the potential for
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macrophages to present an altered cytokine profile. Similarly,
HIV-infected or gp120-stimulated macrophages produce neu-
rotoxic products as well as inflammatory cytokines, such as
TNF-a and IL-1b, which can further potentiate neurotoxin
production (50, 302).
The molecular and cellular events that drive the asymptom-

atic infected individual to ATL or HAM/TSP remain contro-
versial, however, the low frequency of disease among infected
individuals (140) suggests that a rare event or combination of
events are required for progression. Some of the current hy-
potheses postulated to explain the progression from a carrier
state to ATL are listed in Table 3. The HTLV-1-encoded Tax
protein has been demonstrated to have oncogenic potential
(246, 272, 275, 323, 362), and it has been proposed that
HTLV-1 infection is a necessary but insufficient step and that
secondary or tertiary random, mutational events are required
for cellular transformation to ATL. The oncogenic potential
could also occur only under specific, possibly rare, cellular
conditions when simultaneous Tax expression is present. One
mechanism postulated is the development of a prelymphoma
state caused by the continuous triggering of T-cell activation
(224, 362). However, since progression to disease is uncom-
mon, other mechanisms for the shift to cancer, including pre-
vious or subsequent host cell damage, have been proposed
(362). The reduced expression of the DNA repair enzyme
b-polymerase (158) is a Tax-mediated event which may allow
for the accumulations of random, nonlethal, and eventually
oncogenic mutational events which could lead to the develop-
ment of ATL. This model is strengthened by the observation
that a variety of different chromosomal abnormalities are fre-
quently found in ATL patients; however, no specific aberration
appears to be related to the development of ATL (37, 100,
231). Tax has been shown to activate NF-kB and the HIV-1
LTR by a mechanism which depends upon the production of
reactive oxygen intermediates (295; reviewed in reference
356). In addition, mice transgenic for HTLV-1 develop an
inflammatory arthropathy which correlates with Tax expres-
sion in joints (154). In contrast, Tax also induces the expression
of adult T-cell leukemia factor, which is the human homolog of
the bacterial coenzyme thioredoxin (147, 356). Thus, while Tax
may induce conditions of oxidant stress, which favor gene ex-
pression, this condition can be reversed to protect cells from
oxidative damage. This type of feedback mechanism may be
another way in which virus persists. However, continued
rounds of oxidative stress and recovery have the potential to
induce irreversible genetic damage to HTLV-infected cells.
Given their Tax-related resistance to apoptosis (60), the sur-
vival of these cells may allow for the accumulation of muta-
tions, eventually leading to their transformation to ATL cells.
As described above, oxidative stress has also been proposed as
one of several cellular conditions significant in the progression
to AIDS (77, 79).

EFFECT OF HUMAN RETROVIRUS-ENCODED
PROTEINS ON APOPTOSIS

The mode of stimulation and the intensity and duration of
stimulation of the Th cell determine its subsequent prolifera-
tive response. Appropriate engagement of the TCR results in
proliferation and IL-2 production. Inappropriate stimulation
by engagement of the TCR in the absence of a costimulatory
signal may result in a functionally paralyzed or anergic cell or
a cell programmed for death by apoptosis (reviewed in refer-
ence 306). It has been well documented that one outcome of
the in vitro activation of CD41 and CD81 T cells in HIV-1-
infected individuals is apoptosis (4, 12, 115, 122, 227, 228). The

induction of apoptosis by HIV is multifaceted, being mediated
by specific virus-encoded proteins and also by altered cellular
pathways, which result from the effects of infection on immune
responses. The HIV Tat protein and interactions between the
CD4 receptor and gp120 are known mediators of altered T-cell
responses; thus, it is not surprising that these mediators have
also been identified as apoptotic agents. Apoptosis is induced
in T-cell lines by the expression of the HIV env gene (196, 213),
and anti-gp120 antibodies can block apoptosis mediated by
HIV infection of T cells. Apoptosis induced by cell-to-cell
transmission of HIV requires CD4-Env interactions and is not
dependent upon new HIV replication (220). Cross-linking of
CD4 with gp120 and anti-gp120 or with anti-CD4 antibodies
can prime uninfected cells for apoptosis (12, 248). Apoptosis is
also induced by cross-linking with gp120 followed by ligation of
the TCR, and this sequence of binding events has been sug-
gested as a mechanism of apoptosis in HIV-infected individu-
als (12, 122). The susceptibility of CD41 T cells to this route of
apoptosis depends upon the period between the binding of
gp120 and the subsequent encounter with antigen (333). In
addition, resistance to gp120-mediated apoptosis is character-
ized by a down-modulation of CD4 concurrent with a high
expression of the anti-apoptosis protein Bcl-2 and is not de-
pendent upon the level of Fas expression by the cells (334).
Ligation of CD2 and CD28 in combination with TCR occu-
pancy can rescue CD41 T cells from gp120-mediated apopto-
sis, and a similar rescue can be provided by IL-4 and IL-2
(334). However, the importance of TCR occupancy can be
questioned, since recently activated cells can undergo gp120-
mediated apoptosis in the absence of TCR ligation (94).
Several mechanisms for gp120-induced apoptosis can be

proposed. Binding of gp120 may interfere with normal T-cell
regulatory pathways which protect the cell from apoptosis.
These pathways include a decrease in p56lck activity (38) or the
activation of phosphatidylinositol 3- and 4-kinase activity
(276). Alternatively, a disturbed microenvironment in which
cytokines normally protective against apoptosis, such as IL-2
and IL-4, are down-regulated by HIV infection could render
cells sensitive to apoptosis. In addition, interaction of HIV

FIG. 4. Infection of Th cells by HTLV or HIV and the consequences of
activation on apoptosis.
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gp120 with CD4 can induce the production of a number of
cytokines by T cells and macrophages, including TNF-a, IL-6,
IL-1, granulocyte-macrophage colony-stimulating factor, and
IFN-b (reviewed in reference 256). Finally, apoptosis could
reflect the absence of proper accessory cell functions or their
costimulatory signals. Underlying all of these proposals is the
aberrant activation of cells in the presence of HIV infection.
Recent reports have indicated that infection with HIV-1

results in a greater sensitivity to Fas-mediated apoptosis in
human CD41 and CD81 T cells and in macrophages (168,
352). Indeed, infected macrophages can induce Fas-mediated
destruction of lymphocytes (10). In addition, HIV-1 Tat has
been shown to induce enhanced expression of the Fas receptor,
CD95, thus accelerating Fas-mediated apoptosis (352). The
ability of Tat to induce apoptosis in various cell types requires
nanomolar levels of Tat, while picomolar levels appear to be
protective against apoptosis (109, 367). The protective effect of
Tat may be mediated by Bcl-2 expression in human cell lines
and PBMC (366). However, in contrast to this, infection of
Bcl-2-expressing T-cell clones with HIV resulted in an accel-
erated spreading infection and rapid loss of cell viability (289).
Thus, Bcl-2 expression enhanced the ability of T cells to sup-
port HIV replication. A similar result was observed in HIV-
infected T cells treated with the adenovirus antiapoptosis pro-
tein E1B (6). On the other hand, the induction of apoptosis by
Tat occurs in the absence of changes in Bcl-2 expression (205)
and is associated with the activation of cyclin-dependent ki-
nases (205), which could prevent cells from returning to a
quiescent state. A Tat-induced protection from apoptosis
could potentially provide conditions required for the lympho-
proliferation of cells, leading to neoplasms associated with
AIDS (366). In support of this proposal is the finding that Tat
acts as a growth factor for cells derived from Kaposi’s sarcoma
lesions (83).
The contrasting effects of Tat in the studies described above

could depend on whether conditions provide for the uptake of
Tat, whether Tat is endogenously produced, or whether Tat is
acting extracellularly at cell membrane receptors. Tat binds
with high affinity to both soluble CD26 and cell surface CD26
on Th cells (127) and, in doing so, inhibits the activity of this
receptor (343). CD26 is a surface protease, expressed by CD41

T cells, which mediates recall antigen responses. Although
CD26 has been reported to serve as a coreceptor for HIV entry
(30), this result could not be confirmed by other laboratories.
Additionally, HIV preferentially infects CD41 CD262 T cells
(22). There is a selective loss of CD261 cells, including both
Fas1 and Fas2 populations (104), during the progression to
AIDS (22). The loss of both these populations suggests that the
binding of Tat to CD26 may activate an alternate apoptotic
pathway. Further to this, Morimoto et al. (234) have demon-
strated that an inhibition of CD26 enzymic activity in CD261

cell lines results in an enhanced sensitivity to apoptosis induced
by anti-CD95 antibody.
The Tat protein induces oxidative stress in human T cells

(352) which can be abrogated by both inhibitors of Tat and
agents which inhibit oxidative stress (81). Ehret et al. examined
the ability of Tat to induce oxidative stress and apoptosis in
chimpanzee T cells (81). Chimpanzees are susceptible to in-
fection with HIV-1 but are relatively resistant to disease pro-
gression (137). While Tat was effectively taken up by chimpan-
zee T cells, neither oxidative stress nor apoptosis was observed
(81). As previously mentioned, unlike HIV-1-infected humans,
cysteine metabolic dysfunction is not evident in HIV-infected
chimpanzees. The mechanism underlying the resistance of
chimpanzee cells to the effects of Tat is not understood but

may provide another avenue to a closer understanding of dis-
ease progression in HIV-1-infected individuals.
In addition to Tat, HIV-1 encodes several regulatory pro-

teins, including Rev, which regulates viral mRNA expression,
Nef, which induces CD4 internalization, Vpu, which is re-
quired for nuclear targeting, and Vpr, which is required for
virus release (reviewed in reference 235). While apoptosis has
not been demonstrated as an end point, Tat, Rev, Nef, and
gp120 possess cytotoxic properties in vitro which may be in-
volved in the pathogenesis of AIDS dementia (112, 209, 214,
351). Vpu, Nef, and Env participate independently in the
down-modulation of CD4 in primary cells in vitro (41). The
down-modulation is temporal, with Nef acting early and Env
and Vpu acting late in the viral life cycle. Further contributing
to T-cell dysfunction in HIV infection is the Vpr accessory
protein, which has been reported to induce cell cycle arrest in
the G2 phase (15, 267). Vpr expression in the infected cell may
protect the cell from apoptosis by preventing entry into the
mitotic cycle, further contributing to viral persistence. Thus,
apoptosis resulting from HIV-1 infection is a dynamic process,
which could be mediated by viral proteins acting independently
or in cooperation to undermine the normal function of the Th
cell.
In contrast to HIV-1, human T-cell lines infected with

HTLV-1 or expressing Tax are protected from Fas-mediated
apoptosis (60). This protection is conferred to uninfected ac-
tivated PBMC by the HTLV-1 Tax protein but not the HIV-1
Tat protein, and it shows a dependence upon basal PKC pro-
duction in the infected cells (60). In another study, Tax was
found to induce apoptosis in Jurkat cells bearing an estrogen-
inducible fusion protein containing Tax (47); however, apopto-
sis of these cells required extended Tax expression (9 days).
Other reports of the enhancement of apoptosis by Tax used
non-T-cell models (99, 355). These contrasting effects of Tax
on apoptosis could be, as with Tat, dependent upon the con-
centration of Tax used. Cell cycle position and regulatory path-
ways active in the Th cell upon the introduction of Tax could
also contribute to the outcome of Tax treatment. This is par-
ticularly important to consider, given the pleiotropic effects of
Tax on cellular gene activation and suppression.

APOPTOSIS AND DISEASE PROGRESSION

The loss of CD41 T cells is a hallmark of HIV infection.
While several mechanisms probably account for this decline,
cell death by the normal physiological process of apoptosis is
significant in that it can be induced by several pathways (Fig.
4). The effects of HIV on the immune system provide the
appropriate conditions for this process. Apoptosis can be me-
diated by HIV envelope proteins (12, 196, 350), TCR/CD3
interactions (12, 248), expression of Tat (205), cross-linking of
CD4 (12, 255), and possibly superantigen (151). The contribu-
tion of HIV to the markedly elevated levels of apoptosis is
generally believed to occur in HIV-infected lymphoid tissue
and PBMC, both in infected and predominantly in uninfected
bystander cells (90). Further, a direct correlation between ap-
optosis and disease progression has recently been demon-
strated (116). Apoptosis in lymph nodes of infected individuals
is associated with a general state of immune system activation,
but earlier reports did not find an association with disease
progression or viral load (239). Evidence indicates that path-
ways mediating apoptosis are up-regulated by HIV infection
and may further be associated with disease progression. The
role of the Fas pathway in the apoptosis observed in HIV
infection has recently been the subject of vigorous study. An
increase in Fas-mediated apoptosis in symptomatic HIV-1-

732 COPELAND AND HEENEY MICROBIOL. REV.



infected individuals which appears to correlate with an over-
expression of Fas antigen during infection has been reported
(168). Overexpression of Fas is evident in advanced disease
(66, 84, 168, 308); however, the loss of CD41 cells during
disease progression is independent of whether the cells are
Fas1 or Fas2 (104). This indicates that HIV-associated apo-
ptosis is not exclusive to the Fas pathway. Importantly, Fas1

CD81 T-cell numbers are increased during HIV infection,
including the CD81 CD282 subpopulation of these cells (36).
A selective targeting of Fas1 CD41 Th cells might explain the
increase in Fas1 CD81 T-cell number.
Th1 cells can be induced to express FasL, whereas Th2 cells

express little or no FasL (279). Thus, while cross-linking of
gp120-CD4 complexes by antibody would stimulate both Th1
and Th2 cells, FasL would be expressed primarily by Th1 cells
with the potential to induce activation-dependent cell death or
undergo apoptosis themselves. A clonal expansion of FasL-
expressing Th1 cells might lead to a loss of the CD951 Th1
population, thus possibly increasing the proportion of Th2
cells. Naive T cells (CD45RA1) express little or no cell surface
Fas, but Fas expression can be induced upon activation, while
mature (CD45RO1) T cells express high levels of Fas (177,
232). Fas-mediated signalling under specific conditions results
in an enhanced proliferation of Th cells and increased produc-
tion of IL-2, IFN-g, and TNF (2). Not all Fas-expressing cells
are susceptible to apoptosis (358); thus, the expression of ap-
optogen receptors such as Fas alone is not sufficient for apo-
ptosis to occur. Apoptosis may require specific cellular condi-
tions, such as down-regulation of protective genes (i.e., Bcl-2),
changes in redox potential, or exhaustion, for cell death to
proceed. For instance, one study has demonstrated a high
sensitivity of T cells of HIV-1-infected individuals to Fas stim-
ulation by using an antibody unreactive to the apoptotic do-
main of Fas (308). During progression to AIDS, Th cells are in
a high-level state of activation and Fas expression is increased.
In the latter stages of the immune response, signalling via Fas
may lead to a reduction in the number of T cells via apoptosis.
This could result in a change in cytokine profiles as a result of
the loss of antigen-specific helper activity. In addition, anergy
induced by inappropriate activation may further compound the
problem of the apoptotic role of Fas and possibly result in
further T-cell loss. Thus, in advanced disease, the Th1 popu-
lation expressing high levels of Fas could become a target for
removal rather than activation. This could be mediated in
several ways, including binding of Tat to CD26 or by a Th1-
to-Th2 shift in cytokine profile. Study of the participation of
cytokines in the promotion of activation-induced apoptosis in
HIV-1-infected lymphocytes has revealed that type 1 cytokines
(IFN-g, IL-2, and IL-12) are protective against apoptosis (52).
In contrast, the Th2 cytokines IL-4 and IL-10 either have no
effect or enhance apoptosis (52). Thus, a decline in CD4 counts
could represent a shift from a protective Th1 profile to a Th2
cytokine profile, which would permit further apoptosis. The
Th1-to-Th2 shift would be further supported by the preference
of macrophages to present antigens to Th1 cells. An infected
macrophage might deliver an altered activation signal during
antigen presentation, which could result in anergy or apoptosis.
In this regard, it is important to note that infection of human
macrophages results in the de novo expression of FasL and the
ability of these cells to induce the Fas-mediated cell death of
human PBMC (10).
While CD41 T-cell depletion is central to the development

of AIDS, other cell types are also committed to apoptosis
throughout the course of infection. CD81 T cells, B cells, and
hematopoietic progenitor cells from HIV-1-infected individu-
als also undergo apoptosis (32, 33, 115, 156, 227, 281). One of

the earliest events following HIV infection is an expansion of
the population of activated, memory (CD45RO1) CD81 T
cells (170, 369). Accompanying the activation and expansion of
the CD8 compartment, however, are functional defects in
CD81 T-cell responses to activation and recall antigen (123,
339). Associated with the increase in the number of CD81 T
cells is the advent of HIV-specific CTL, which are present
throughout the asymptomatic period (179, 283, 338). Periph-
eral CD81 T cells of infected individuals undergo spontaneous
and activation-induced apoptosis following a short period of in
vitro culture (115, 227). A direct correlation was found be-
tween the intensity of spontaneous and anti-CD3-induced ap-
optosis in both CD41 and CD81 T cells from patients and
their ex vivo activation state, as evaluated by CD45RO, HLA-
DR, and CD38 expression (116). An activation-associated cell
death has been observed for the Fas1 CD45RO1 T-cell pop-
ulation in asymptomatic infection (156). The chronic activation
state of the immune system induces a down-regulation of Bcl-2
and an up-regulation of Fas in a fraction of CD81 T cells,
which primes these cells for in vitro apoptosis (24). Further to
this, in vitro studies indicate that increasing virus load and
apoptosis are associated with a shift toward the selective death
of CD81 T cells (33). In vivo, a progressive depletion of CD81

T cells and a decline in CD81 T-cell effector function occur
upon disease progression (5, 28, 192, 217, 346). Thus, HIV
infection induces anergy and apoptosis in the CD81 T-cell
compartment. CD81 T cells expressing Fas and CD28 and
demonstrating a Th0 profile (IL-2 and IL-10) have been sug-
gested to be associated with long-term survival. While the
susceptibility of this cell population to apoptosis and the po-
tential of these cells for protection from apoptosis by CD28
stimulation remain to be determined, CD81 T cells of patients
with progressive disease show reduced Fas expression, loss of
CD28 expression, and loss of the production of IL-2 and IL-10
(365). Loss of CD28 expression, combined with lack of IL-2
production, could result in a loss of HLA-1-restricted cytolytic
activity and could negatively affect the production of virus-
suppressive factors (204).
HTLV-1 is mitogenic to resting T cells via the CD2 activa-

tion pathway (103), and this effect is mediated by cell-to-cell
contact (173). In HTLV-1-infected T-cell lines, CD2 cross-
linking induces a cyclosporin A-resistant apoptosis (128). Se-
rum starvation-induced apoptosis of ATL cells is prevented by
IL-2 but promoted by glucocorticoid and the activation of PKA
(329). Examination of thymic tissue of rabbits infected with a
lethal HTLV-1 T-cell line (but not a nonlethal T-cell line)
showed evidence of apoptosis (201).
CTL-induced apoptosis has been observed in active spinal

cord lesions in patients with HAM/TSP (336). Cells undergo-
ing apoptosis were identified as CD45RO1 T lymphocytes.
These authors observed Bcl-2 expression in many of the T cells
in the inflammatory lesions but not those susceptible to apo-
ptosis, suggesting that infiltrating T cells could be resistant to
apoptosis. This is particularly relevant, since Bcl-2 blocks Tax-
mediated apoptosis in rat cells (230). In addition, HTLV-1-
infected individuals with ATL have been reported to undergo
a spontaneous remission which was paralleled by a decrease in
CD45RO expression by PBMC (318). In another study, the
CD45RO cell populations in HTLV-1 carriers and infected
individuals with ATL were examined (319). This study found
two patterns of CD45RO expression. One was a combination
of CD45RO with both high and intermediate fluorescence
intensity, but the second pattern, which was exclusively high
fluorescence intensity, was associated with disease progression.
The intermediate-intensity population expressed far lower lev-
els of Fas antigen than did the high-intensity cells, further
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suggesting that intermediate-intensity CD45RO cells may be
protective against apoptosis and disease progression (319).
Virus-mediated inhibition of apoptosis has been observed

for adenovirus (280), Epstein-Barr virus, (139), and Sindbis
virus (203). The dysregulation of cell suicide pathways by virus
infection may help to favor the establishment of viral infection
of the host by temporarily and partially impairing immune
responses. In an HTLV-1-infected person, a limited amount of
Tax expression could render infected cells protected from ap-
optotic elimination during routine immune responses and sur-
veillance. Thus, expansion of the populations of cells express-
ing HTLV-1 proviral DNA may occur, predisposing these cells
to possibly develop into Th-cell cancer. Protection from apo-
ptosis in HTLV-1 infection may be afforded by low-level ex-
pression of Tax and the subsequent activation of the IL-2/
IL-2R autocrine loop (Fig. 4). In ATL, protection from
apoptosis may eventually allow the more aggressive develop-
ment of lymphomas over time. Also contributing to the estab-
lishment of this type of cancer is the ability of ATL cells to
evade immune responses such as NK-cell cytolysis (89). Given
the extended asymptomatic period of HTLV-1 infection and
the infrequent development of ATL, progression to disease
probably depends on the accumulation of a complex series of
events including persistent T-cell activation, fluctuating viral
quiescence, and lifelong genetic mutations and alterations over
time.

CONCLUSIONS

The specific events which affect Th cells and determine the
onset of the progression to ATL and AIDS are still not pre-
cisely defined. However, a growing body of evidence supports
a central role of T-cell activation in the contrasting pathogen-
esis of AIDS versus ATL. The differences found in the Th-cell
responses to T-cell activation pathways between HTLV-1 and
HIV-1 suggest that these two viruses have evolved very differ-
ent strategies for utilizing and residing in the same host cell
type. They both abrogate T-cell activation signals to control
their own replication, as well as influencing factors affecting
the depletion and expansion of Th-cell populations. However,
they differ in the Th-cell activation pathways they abrogate.
Those differences must be contrasted in the context of the
central biological function that Th cells have and of the loss
versus expansion of these cell populations in the pathogenesis
of HIV and HTLV infection, respectively. Because progression
to ATL occurs infrequently in infected individuals, the events
that trigger progression may be rare. In addition, it seems likely
that, as with HAM/TSP, higher virus expression may be re-
quired for progression to disease. It must also be considered
that certain events may need to occur, possibly in a specific
order during infection. The observation that T-cell activation
limits HTLV expression in vitro may indicate that infrequent
events are required during the asymptomatic phase for the
stepwise progression to ATL. In contrast, the course of clinical
progression to AIDS is more predictable, despite the small
population of long-term nonprogressors. This group may be
critical to defining the relationship between immune system
activation, immune system suppression, and Th-cell loss during
HIV infection. A focus on understanding the impact of retro-
viral infection on Th-cell population dynamics during infection
and disease progression is important to further our knowledge
of these contrasting human retrovirus-mediated diseases.
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